Journal of Heat Transfer

Editorial

At the National Heat Transfer Conference in Albuquerque on August 16, 1999, the Editorial Board of the *Journal of Heat Transfer* considered and unanimously adopted a common symbol list for papers submitted to the Journal. At a meeting later that day, the Editors of 20 journals in the field of heat transfer unanimously adopted the same list, and will be publicizing its use to authors that submit manuscripts to their respective journals.

This action came after almost two years of consideration and revision of the list.

Authors submitting papers to the Journal of Heat Transfer should now use the symbols and definitions in the list, which is published in this issue of the Journal and is posted on the JHT web page. When these symbols are used, they need not be included in the Nomenclature section of the paper. Only those symbols not included in the common list need be placed in the Nomenclature of a particular paper. Because of the broad range of heat transfer topics covered in the Journal, the Common List cannot cover all quantities, and the exceptions should be covered as before in the individual Nomenclature definitions.

The Editors hope that the adoption of the Common List will make it easier for future readers of heat transfer literature to interpret paper content because of the common symbols and definitions used across the major journals. For the *Journal of Heat Transfer* in particular, eliminating the duplication of definitions used in the many papers in a single Journal issue allows the limited page count available for the Journal to be put to better use.

We do expect a certain amount of controversy, because every author has particular preferences for nomenclature and symbols. We hope that in the long term, the symbols in the Common List will be adopted across the field, and will provide a basis for more uniform and clear communication in the heat transfer community.

> John R. Howell Technical Editor

NOMENCLATURE

<u>OUANTITY</u>	SYMBOL	COHERENT SI UNIT
Absorptivity (radiation)	α	
Absorption Coefficient (radiation)	κ	m ¹
Activation Energy of a Reaction	ΔE	J/kg
Amount-of-Substance	N	kmol
molar flow rate	Ň	kmol/s
molar 'mass velocity' $(= \dot{N} / A_c)$	'n	kmol/m ² s
Angle		
plane	α, β, γ, θ, φ	rad
solid	Ω, ω	sr
of contact	θ	rad
Area		
cross-sectional	A_c, S	m ²
surface	A, A,	<u>m</u> ²
Coefficient of Volume Expansion	$\beta = (1/\upsilon) (\partial \upsilon / \partial T)_{\mu}$	K ⁻¹
Compressibility Factor $(= p\vec{v} / \vec{R}T)$	Z	_
Complex Refractive Index	m = n- ik	
Concentration		
mass $(= M/V)$	$c_{\mu} \rho_{i}$	kg/m ³
molar (= N/V)	$\overline{c}_i, \overline{\rho}_i$	kmol/m³
Coordinates		
Cartesian	x, y, z	m, m, m
cylindrical	r, φ, z	m, rad, m
spherical	<i>r</i> , θ, φ	m, rad, rad
Density		
mass $(= M/V)$	ρ	kg/m ³
molar (= N/V)	ρ	kmol/m ³
Diffusion Coefficient	D	m²/s
Diffusivity, Thermal		
$(= k / \rho c_p)$	α	m²/s
Dryness Fraction (quality)	x	
of flow	<u>x</u> *	
Emissive Power (radiation)	E	W/m ²
Emissivity (radiation)	3	—
Energy	E	J =Nm
kinetic	E_{μ}	J = Nm
potential	Ē	J = Nm
transfer per unit time (power)	Ŵ,Ż	$W=Nm/s=kg m^2/s^3$
Enthalpy $(= U + pV)$	Н_	J
specific, molar	h, \overline{h}	J/kg, J/kmol
of reaction	$\Delta H^{ m heta}$	J
Entropy	S	J/K
specific, molar	<i>s</i> , s	J/kg K, J/kmol K
Equilibrium (dissociation) constant	K	
Extinction coefficient	$\beta = \kappa + \sigma_{s}$	m ⁻¹

Force	F	$N = kg m/s^2$
weight (force of gravity)	Mg	$N = kg m/s^2$
Fraction		
mass, of species i	x_{a} y _i	
mole, of species i	$\overline{x}_i, \overline{y}_i$	
void	E E	
of volume flow	° *	—
Frequency	v, f	$Hz = s^{-1}$
circular	ω	rad/s
Gas Constant		
molar (universal)	\overline{R}	J/kmol K
specific, of species i	R	J/kg K
Gibbs Function (= H - TS)	G	J
specific $(= h - Ts)$	8	J/kg
molar $(=\overline{h} - T\overline{s})$	8	J/kmol
Gravitational Acceleration	~	m/c^2
standard	8	m/s^2
Heat	<u> </u>	111/3
quantity of	0	J
quantity of	Σ.	
rate (power)	\dot{Q},q	W = J/s
flux (\dot{Q} / A)	<i>q</i> ,q"	W/m ²
rate per unit volume	Ś,ġ‴	W/m ³
Heat Canacity		I/K
Theat Capacity	C	5/12
specific (constant v or p)	c_{v}, c_{p}	J/kg K
molar (constant v or p)	$\overline{c}_{u}, \overline{c}_{n}$	J/kmol K
ratio c_p/c_v	v	
Heat Transfer Coefficient	h	W/m ² K
Helmholtz Function		
(=U - TS)	F	J
specific $(= u - T s)$	f	J/kg
molar $(=\overline{u}-T\overline{s})$	Ī	J/kmol
Intensity (radiation)	1	W/m ² sr
Internal Energy	1/	I
specific, molar	u.ū	J/kg. J/kmol
Joule - Thomson Coefficient	$\mu_{m} = (\partial I / \partial p).$	$K/Pa = m^2 K/N$
Length		m
width	W	m
height	Н	m
diameter	D	m
radius	R	m
distance along path	5	m
film thickness	δ	m
thickness	δ, Δ	m
Mass	М	kg
flow rate	Ń	kg/s
velocity of flux (flowrate per unit area = \dot{M} / A_c)	ṁ,ρu	kg/m²s
Mass Transfer Coefficient	h_{m}, k_{m}	m/s
Molar Mass	M	kg/kmol

Journal of Heat Transfer

-

NOVEMBER 1999, Vol. 121 / 771

Mean Free Path	$\overline{\lambda}, l$	m
Optical Thickness	τ	
Phase Function (radiation)	Φ	
Pressure	p	$Pa = N/m^2$
drop	Δp	Pa
partial	<i>p</i> _i	Pa
Reflectivity (radiation)	ρ	<u> </u>
Scattering Albedo	$\omega = \sigma_s / (\sigma_s + \kappa)$	
Scattering Coefficient (radiation)	σ,	m ⁻¹
Shear Stress	τ	$Pa = N/m^2 = kg/m s^2$
Stoichiometric Coefficient	V	
Surface Tension	σ	$N/m = kg/s^2$
Temperature		
absolute		К
Thermal Conductivity	k	W/mK
Time	t	S
Velocity	u .	m/s
components in Cartesian coordinates x, y, z	u, v, w	m/s
View Factor (geometric or configuration factor)	F _u	
Viscosity		
dynamic (absolute)	μ	Pa s=N s/m ² = kg/m s
kinematic (=µ/p)	V	m ² /s
Volume	V	m
flow rate	V V	m ³ /s
specific, molar	v, \overline{v}	m³/kg, m³/kmol
Work	W	J = Nm
rate (power)	Ŵ	W = J/s = Nm/s
Wavelength	λ	m

SUBSCRIPTS AND SUPERSCRIPTS

OUANTITY	SYMBOL
Bulk	b
Critical State	с
Fluid	f
Gas or Saturated Vapour	g
Liquid or Saturated Liquid	1
Change of Phase	
fusion	ls
sublimation	sg
evaporation	lg
Mass transfer quantity	m
Solid or Saturated Solid	S
Wall	w
Free-stream	x 0
Inlet	in, 1
Outlet	out, 2
At Constant Value of Property	p, v, T, etc
Molar (per unit of amount-of-substance)	— (overbar)
Stagnation (subscript)	0

Transactions of the ASME

DIMENSIONLESS GROUPS*

OUANTITY	SYMBOL
Biot Number	$\operatorname{Bi} = hL/k$
Bond Number	$Bo = g(\rho_l - \rho_v)L^2 / \sigma$
Dean Number	$(\text{Re}) (r_{\rm u}/R_{\rm coll})^{1/2}$
	$(r_{in} = tube inner radius;$
	$R_{coll} = coil mean radius)$
Eckert Number	$Ec = u^2/c_n \Delta T$
Euler Number	$\mathrm{Eu} = \Delta p \left(\frac{1}{2} \rho u^2 \right)$
Fourier Number	$Fo = \alpha t/L^2$
Friction Factor	$f = \tau_w / \left(\frac{1}{2} \rho u^2 \right)$
Froude Number	$Fr = u^2/gl$
Galileo Number	$Ga = L^3 g/v^2$
Grashof Number	$Gr = \frac{\beta g L^3 \Delta T}{2}$
Create Number	$\frac{V^2}{(C_{2} - (D_{2})/(D_{2}))} D/($
Graetz Number	GZ = (Re)(PI) D/L
Knudsen Number (λ = mean free path)	$Kn = \lambda / L$
Lewis Number	$Le = (Sc)/(Pr) = \alpha/D$
Mach Number	$M = u / u_{sound}$
	$= u / (\gamma \overline{R}T / \overline{M})^{1/2}$ for perfect gas
Marangoni Number	$Ma = \frac{\partial \sigma}{\partial T} R\Delta T / (\alpha \mu)$
Nusselt Number	$Nu = hL/k_{t}$
Péclet Number	Pe = (Re)(Pr)
Prandtl Number	$\Pr = \frac{\mu c_p}{k}$
Rayleigh Number	Ra=(Gr)(Pr)
Reynolds Number	$Re = uL / v = \rho uL / \mu = \dot{m}L / \mu$
Schmidt Number	Sc=v/D=μ/ρD
Sherwood Number	$h_m L/D$
Stanton Number	$St=(Nu)/(Re)(Pr)=h/\rho c_n u$
Stefan or Jakob Number	Ste or $Ja = c_a \Delta T / \Delta h$
Strouhal Number	Sr = vL/u
Weber Number	$We = u^2 \rho L/\sigma$

* The symbol L in the dimensionless groups stands for a generic length, and is defined according to the particular geometry being described; i.e., it may be diameter, hydraulic diameter, plate length, etc.

PHYSICAL CONSTANTS

<u>OUANTITY</u>	SYMBOL
Avogadro's Number	$N_{\rm A} = 6.0225 \times 10^{26} {\rm kmol^{-1}}$
Boltzmann's Constant	$k = 1.38066 \times 10^{-23} \text{ J/K}$
Planck's Constant	$h = 6.62608 \times 10^{-34} \text{ Js}$
Stefan-Boltzmann Constant	$\sigma = 5.67051 \text{x} 10^{-8} \text{ W/(m}^2\text{K}^4)$
Speed of Light in Vacuum	$c = 2.99792 \times 10^8 \text{ m/s}$
Universal Gas Constant	$\overline{R} = 8.31441 \times 10^{3} \text{J/kmol} \cdot \text{K}$

Journal of Heat Transfer

NOVEMBER 1999, Vol. 121 / 773